Diversifying crop rotations with pulses enhances system productivity
نویسندگان
چکیده
Agriculture in rainfed dry areas is often challenged by inadequate water and nutrient supplies. Summerfallowing has been used to conserve rainwater and promote the release of nitrogen via the N mineralization of soil organic matter. However, summerfallowing leaves land without any crops planted for one entire growing season, creating lost production opportunity. Additionally, summerfallowing has serious environmental consequences. It is unknown whether alternative systems can be developed to retain the beneficial features of summerfallowing with little or no environmental impact. Here, we show that diversifying cropping systems with pulse crops can enhance soil water conservation, improve soil N availability, and increase system productivity. A 3-yr cropping sequence study, repeated for five cycles in Saskatchewan from 2005 to 2011, shows that both pulse- and summerfallow-based systems enhances soil N availability, but the pulse system employs biological fixation of atmospheric N2, whereas the summerfallow-system relies on 'mining' soil N with depleting soil organic matter. In a 3-yr cropping cycle, the pulse system increased total grain production by 35.5%, improved protein yield by 50.9%, and enhanced fertilizer-N use efficiency by 33.0% over the summerfallow system. Diversifying cropping systems with pulses can serve as an effective alternative to summerfallowing in rainfed dry areas.
منابع مشابه
Integrated nutrient management for sustainable crop production, improving crop quality and soil health, and minimizing environmental pollution
Laboratory, growth chamber and multiyear field studies were conducted with prominent cropping systems of the subtropical northwestern states of India including rice–wheat, rice–mustard, rice–rapeseed, soybean– wheat, soybean–rapeseed, groundnut–wheat, and groundnut–sunflower by including legumes (moongbean, cowpea, sesbania, pigeon pea) to investigate the role of integrated nutrient management ...
متن کاملAccounting for soil biotic effects on soil health and crop productivity in the design of crop rotations.
There is an urgent need for novel agronomic improvements capable of boosting crop yields while alleviating environmental impacts. One such approach is the use of optimized crop rotations. However, a set of measurements that can serve as guiding principles for the design of crop rotations is lacking. Crop rotations take advantage of niche complementarity, enabling the optimization of nutrient us...
متن کاملMultifunctional agriculture: Root and nitrogen dynamics in two alternative systems
The Corn Belt of the Midwestern United States is among the most productive grainproducing regions of the world. Yet the development of the Corn Belt has been accompanied by a suite of environmental concerns. Alternative systems have been proposed that remediate environmental quality while relying on fewer external inputs (e.g., synthetic nitrogen fertilizer) than dominate cropping systems of co...
متن کاملCrop rotation complexity regulates the decomposition of high and low quality residues
While many ecosystem processes depend on biodiversity, the relationships between agricultural plant diversity and soil carbon (C) and nitrogen (N) dynamics remains controversial. Our objective was to examine how temporal plant diversity (i.e. crop rotation) influences residue decomposition, a key ecosystem function that regulates nutrient cycling, greenhouse gas emissions, and soil organic matt...
متن کاملA framework for assessing crop production from rotations
Organic farming systems rely on the management of biological cycles for the provision of nutrients, which are crucial to maximising the production from the system. Rotations based on the use of grass-legume leys are central to the concept of organic farming systems, because they have the potential to support both animal production, and a subsequent, exploitative, arable cropping phase. A major ...
متن کامل